
About Caching in D4 2.0

Jean-Marie Lagniez1 Pierre Marquis1,2

6th July 2021

1CRIL, Université d’Artois & CNRS, France
2Institut Universitaire de France, France

{lagniez, marquis}@cril.fr

Introduction Caching Experiments Conclusion and Perspectives

SAT and #SAT

SAT
Variables: w, x, y, z, . . . , a, b, c, . . .
Literals: w, y, a, . . . , but also ¬a, ¬c , ¬y , . . .
Clauses: disjunction of literals (or set of literals)
CNF formula: conjunction of clauses (or set of clauses)
Model: mapping from variables to {0, 1} that satisfies the CNF
formula
a formula can be SAT or UNSAT
The SAT problem is NP-complete

#SAT
Counting the number of models is the #SAT problem
It generalizes SAT and is the canonical #P-complete problem

2 / 17
N

Introduction Caching Experiments Conclusion and Perspectives

Basic Model Counter
Algorithm 1: dpll-counter(Σ)
input : a CNF formula Σ
output: its model count
if solve(Σ) = ⊥ then return 0;
if cache[Σ] 6= nil then return cache[Σ];
if cache.mustBeCleaned() then return cache.clean();
〈Σ′, τ〉 ← BCP(Σ);
comps ← connectedComponents(Σ′);
ret ← 1;
if |comps| > 1 then

foreach c ∈ comps do
ret ← ret×dpll-counter(c);

else if |comps| = 1 then
v ← selectVar(var(Σ′));
ret ← dpll-counter(Σ′|v) + dpll-counter(Σ|negv);
cache[Σ′] = ret;

return ret × 2|var(Σ)\(var(Σ′∪var(τ)))|;

3 / 17
N

Introduction Caching Experiments Conclusion and Perspectives

Basic Model Counter
Algorithm 2: dpll-counter(Σ)
input : a CNF formula Σ
output: its model count
if solve(Σ) = ⊥ then return 0;

. if cache[Σ] 6= nil then return cache[Σ];

. if cache.mustBeCleaned() then return cache.clean();
〈Σ′, τ〉 ← BCP(Σ);
comps ← connectedComponents(Σ′);
ret ← 1;
if |comps| > 1 then

foreach c ∈ comps do
ret ← ret×dpll-counter(c);

else if |comps| = 1 then
v ← selectVar(var(Σ′));
ret ← dpll-counter(Σ′|v) + dpll-counter(Σ|negv);

. cache[Σ′] = ret;
return ret × 2|var(Σ)\(var(Σ′∪var(τ)))|;

3 / 17
N

Introduction Caching Experiments Conclusion and Perspectives

Caching Ingredients

Caching scheme:
a caching scheme c is a mapping associating with any ϕ ∈ S(Σ) for
some CNF formula Σ a representation rc(ϕ) of ϕ
a cache for Σ given a caching scheme c is a mapping associating
with representations rc(ϕ) of CNF formulae ϕ ∈ S(Σ) their numbers
of models
A correct caching scheme c is a caching scheme such that for any
CNF formula Σ, ϕ1, ϕ2 ∈ S(Σ), if rc(ϕ1) = rc(ϕ2) then ϕ1 ≡ ϕ2

in practice only a syntactic equivalence relation is considered

Cache cleaning strategy:
makes precise the entries that have to be removed from the cache
the cleaning operations can be achieved periodically, or be triggered
by some events (number of entries, quantity of memory, . . .)

4 / 17
N

Introduction Caching Experiments Conclusion and Perspectives

Clause Representations

Clauses are simplified and satisfied clauses are not represented

Literal representation:
a clause is represented as a string gathering the identifiers
(integers) of its literals, terminating by zero
the identifier of a positive literal xi is its index i in the enumeration
x1 < x2 < . . . < xn , and the identifier of a negative literal ¬xi is −i

Index representation:
the clauses of the input CNF formula are indexed in an arbitrary
way (the index of the first clause of Σ is 1, the index of the second
clause of Σ is 2, etc.)
a clause is represented by its index
being able to recover the variables of the CNF formula is required

5 / 17
N

Introduction Caching Experiments Conclusion and Perspectives

Formulae Representations
All clauses:

in the standard caching scheme all clauses are used to represent the
CNF formula at hand

Not binary clauses:
in the caching scheme implemented in sharpSAT all the clauses
except those of size at most two are used to represent the CNF
formula
to retrieve the CNF formula, variables occurring in the formula must
be part of the CNF representation

Not touched clauses:
in the caching scheme implemented in D4 all the clauses except those
that have not been touched are used to represent the CNF formula
as for sharpSAT, to retrieve the CNF formula, variables occurring in
the formula must be part of the CNF representation

6 / 17
N

Introduction Caching Experiments Conclusion and Perspectives

Example - “All Clauses” Scheme

Σ = (x1 ∨ x2 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x3 ∨ x4 ∨ x5)∧ (x1 ∨¬x6) a
CNF, and ϕ = (x3 ∨ x4 ∨ x5) ∧ (x1 ∨ ¬x6) the formula obtained
after conditioning Σ by x2 and simplifying it using BCP

Literal representation (scheme b):

rs(ϕ) = [3, 4, 5, 0, 1,−6, 0]

Index representation (scheme h’):

rh(ϕ) = ([1, 3, 4, 5, 6], [3, 4])

7 / 17
N

Introduction Caching Experiments Conclusion and Perspectives

Example - “Not Binary Clauses” Scheme

Σ = (x1 ∨ x2 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x3 ∨ x4 ∨ x5)∧ (x1 ∨¬x6) a
CNF, and ϕ = (x3 ∨ x4 ∨ x5) ∧ (x1 ∨ ¬x6) the formula obtained
after conditioning Σ by x2 and simplifying it using BCP

Literal representation (scheme 2):

r2(ϕ) = ([1, 3, 4, 5, 6], [3, 4, 5, 0])

Index representation (scheme p):

rp(ϕ) = ([1, 3, 4, 5, 6], [3])

8 / 17
N

Introduction Caching Experiments Conclusion and Perspectives

Example - “Not Touched Clauses” Scheme

Σ = (x1 ∨ x2 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x3 ∨ x4 ∨ x5)∧ (x1 ∨¬x6) a
CNF, and ϕ = (x3 ∨ x4 ∨ x5) ∧ (x1 ∨ ¬x6) the formula obtained
after conditioning Σ by x2 and simplifying it using BCP

Literal representation (scheme i):

ri (ϕ) = ([1, 3, 4, 5, 6], [])

Index representation (scheme i’):

ri ′(ϕ) = ([1, 3, 4, 5, 6], [])

9 / 17
N

Introduction Caching Experiments Conclusion and Perspectives

Previous Cache Cleaning Strategies

Cachet cleaning strategy:
observation: the utility of the cached components typically declines
dramatically with age

each cached component is given a sequence number and those
components that are too old are removed from the cache (the age
limit is considered as an input parameter)

the cache is cleared whenever the number of entries exceeds
221 × 10 and 25% of the entries are kept

10 / 17
N

Introduction Caching Experiments Conclusion and Perspectives

Previous Cache Cleaning Strategies

sharpSAT cleaning strategy:
observation: some entries are more used than others

the entries to be cleaned up do not depend only on their ages, but
also on their activity levels and on their sizes

a score score(e) is associated with each entry e . At start, score(e)
is given by the age of the entry but it is reset during the search
each time a positive hit corresponding to the entry is obtained

all scores are divided periodically to penalize the oldest entries

the cache is cleared only if its size exceeds a fixed fraction of the
maximal allowed size

entries are removed from the cache until a sufficient amount of space
has been recovered

11 / 17
N

Introduction Caching Experiments Conclusion and Perspectives

Our New Cache Cleaning Strategy
Observation: positive hits generally appear on small entries
With each entry e in the cache we associate:

score(e) ∈ N, initially set to |var(e)| and incremented when e hits positively
flag(e), a Boolean that is set to true once the entry hits positively

Periodically, all the entries of the cache are visited in order to
decide the ones that must be removed based on the following ratio

r(e) =
nbHit[|Var(e)|]

nbTotal [|Var(e)|]

with nbTotal [s] the number of entries of size s in the cache, and
nbHit[s] the number entries of size s where flag is true
Every entry e that has a ratio r(e) less that some fixed threshold
rm, with a score(e) equals to zero and a flag(e) set to false is
flushed. The other entries e are kept and their score(e) are divided
by two and whenever score(e) falls to zero, flag(e) is set to false

12 / 17
N

Introduction Caching Experiments Conclusion and Perspectives

Experimental Protocol

All the experiments have been conducted on a cluster equipped
with quadcore bi-processors Intel XEON E5-5637 v4 (3.5 GHz)
and 128 GiB of memory

The kernel used was CentOS 7 (version 3.10.0-514.16.1.el7.x86 64)
and the compiler used was gcc version 5.3.1

Hyperthreading was disabled, and no cache share between cores
was allowed

A time-out (TO) of 1h and a memory-out (MO) of 7.6 GiB has been
considered for each instance

We have considered 400 CNF instances, which are precisely the
benchmarks used for evaluating the performances of the (possibly
weighted) model counters during the First International
Competition on Model Counting

13 / 17
N

Introduction Caching Experiments Conclusion and Perspectives

Caching Schemes Evaluated

Seven caching schemes

Name E/I All Not b Not s
n - - - -
b E X
2 E X
i E X
h′ I X
p I X
i ′ I X

D4 has been used in the model counter mode

tc was set to 218 and rm to 1
2

The hash function used in the implementation of the cache is
MurMurHash2

14 / 17
N

Introduction Caching Experiments Conclusion and Perspectives

Empirical Results
E/I Cleaning Insert All Not b Not s
E none all 244(155) 251(148) 276(119)
E none some 258(132) 264(125) 281(107)

E Cachet all 243(156) 261(133) 288(101)
E Cachet some 258(132) 274(110) 293(89)

E sharpSAT all 262(134) 266(127) 285(87)
E sharpSAT some 277(107) 275(108) 291(76)

E ours all 280(77) 283(69) 299(23)
E ours some 294(54) 296(47) 305(12)

I none all 254(145) 261(138) 271(122)
I none some 263(124) 269(118) 273(110)

I Cachet all 256(143) 271(109) 282(90)
I Cachet some 265(122) 279(89) 285(78)

I sharpSAT all 273(106) 274(102) 280(85)
I sharpSAT some 278(86) 282(85) 282(72)

I ours all 279(48) 283(35) 290(23)
I ours some 288(26) 292(16) 292(10)

15 / 17
N

Introduction Caching Experiments Conclusion and Perspectives

Conclusion and Perspectives

We have presented an improved caching scheme that can be
exploited for model counting or the Decision-Dnnf compilation

We have also presented an improved cache cleaning strategy

We have reported the results of an empirical evaluation showing
the i scheme and the new cleaning strategy as useful

As a perspective for further research, we plan to define and
evaluate “mixed” caching schemes, i.e., schemes for which both
explicit and implicit representations of clauses can be considered

Set tc and rm dynamically by considering the structure of the
input formula

16 / 17
N

About Caching in D4 2.0

Jean-Marie Lagniez1 Pierre Marquis1,2

6th July 2021

1CRIL, Université d’Artois & CNRS, France
2Institut Universitaire de France, France

{lagniez, marquis}@cril.fr

	Introduction
	Caching
	Experiments
	Conclusion and Perspectives

