The Power of Literal Equivalence in Model Counting

Yong Lai, Kuldeep S. Meel and Roland H. C. Yap

College of Computer Science and Technology — JLU
Department of Computer Science — NUS

Y. Lai et al (JLU; NUS) ExactMC 1/29

Model Counting

@ Model Counting (#SAT): computing the number of satisfying
assignments of a propositional formula .

@ An important problem in computer science: Valiant showed that the
problem of model counting is #P-complete; Toda showed that PH
C P#P.

@ Applications: probabilistic inference, neural network verification,
network reliability, computational biology, and the like.

Y. Lai et al (JLU; NUS) ExactMC 2/29

n
—
(D)
-+
c
>
(@)
()
O
e)
O
=
)
O
T
X
LLl

'

o

-

o

Y

® | g

e =

©

"k

L

S

—/

N N YN Yy
~ | | w
-
| 8] 9| |~

o]l N4

s | @ |".] | - | o

o | N} g O] | N

¢ 5 |s |1 |«

b2h.Plvm

o |° &8 |=

> o | E

| N N N

\J\“U\J

<

S| 1o |9

g & 2 %

2 5 53
X

2 |2 g | @

c |o| |2 |§

°© 18| |3

s |0 | |©

%[%[

ExactMC

Y. Lai et al (JLU; NUS)

n
—
(D)
-+
c
>
(@)
()
O
e)
O
=
)
O
T
X
LLl

I I
I I
_ w_ |
I I
I < I
I N I
_w ') I
0 s I
| @© |
| Q m |
(T I
| < |
_V _J !
-)
- - -~ - - - " """ ~-"=""~"”"”"”""”"”= \
_ 'S N) \J“
! N 9 !
| <) o N~ !
| o m N - !
5 Q - o | |
() N S) N !
_% |0.. vnw N - “
_b [\ o @ m I
F_P_V o 0 £ I
N_K D m |
Z | \ J \ J \ J \ J !
ol)
T N __ & _ ____________
c
.m\ IIIIIIIIIIIIIIIIIIIIIIIIII \
RO I
%_ 'S \W}) |
| < |
o S S 3 _
'z] |8 |8 _
I - N I
_% — _Alh k.. |
2 |2 % < |
= % o M !
o 1) o] ® !
I @ - I
(] 2] I
0)
N e e e e e e e e e e e e e

ExactMC

Y. Lai et al (JLU; NUS)

Decision-DNNF

Proposition

Given a Decision-DNNF formula, the model count can be recursively
computed in linear time.

Y. Lai et al (JLU; NUS) ExactMC 5/29

Decision-DNNF

@ There are a great number of sets of literal equivalences in solving
model counting problems, e.g.,
o Circuit 2bitadd_11: 11580 literal equivalences
e Planning instance logistics.c: 757 literal equivalences
o Program synthesis instance sygus_09A-1: 21851 literal equivalences

Y. Lai et al (JLU; NUS) ExactMC 6/29

Decision-DNNF

@ There are a great number of sets of literal equivalences in solving
model counting problems, e.g.,
o Circuit 2bitadd_11: 11580 literal equivalences
e Planning instance logistics.c: 757 literal equivalences
o Program synthesis instance sygus_09A-1: 21851 literal equivalences

@ Decision-DNNF is not expressive enough to capture literal
equivalences.

Y. Lai et al (JLU; NUS) ExactMC 6/29

Decision-DNNF

@ There are a great number of sets of literal equivalences in solving
model counting problems, e.g.,
o Circuit 2bitadd_11: 11580 literal equivalences
e Planning instance logistics.c: 757 literal equivalences
o Program synthesis instance sygus_09A-1: 21851 literal equivalences
@ Decision-DNNF is not expressive enough to capture literal
equivalences.
@ Can we design an efficient model counting technique such that its
trace is a generalization of Decision-DNNF to capture literal

equivalences?
v

Y. Lai et al (JLU; NUS) ExactMC 6/29

0 Capturing Literal Equivalence

@ Identifying New Language CCDD

© ExactMC: A Scalable Model Counter
@ Experiments

© Conclusion and Future Work

Y. Lai et al (JLU; NUS) ExactMC 7/29

e Capturing Literal Equivalence

Y. Lai et al (JLU; NUS) ExactMC

Capturing Literal Equivalence

o Literal equivalence: | <+ I’ for two literals.

@ Prime literal equivalences (unique representation): Given a set of
literal equivalences E, for each equivalence class of literals with a
minimum positive literal x, we pick a x <+ / for each / # x in the
class.

Y. Lai et al (JLU; NUS) ExactMC 9/29

Capturing Literal Equivalence

Given E = {—x1 ¢> x3, x4 <> X3, X2 <> —Xp, X5 <> X5}, we have

o [x1] = [-x3] = [xa] = {x1, ~x3, x4},
[-x1] =[] = [xa] = {~x1, x3, 7xa},
[x2] = [x6] = {x2, %6},

[x2] = [X6] = {—x2, %6},

[xs] = {xs},
[-x5] = [~xs],
[x7] = [x7],

[=x7] = [=x],

() LEJ = {X]_ > X3, X1 < X4, X2 <> X6}.

Y. Lai et al (JLU; NUS) ExactMC 10 /29

Capturing Literal Equivalence

Let ¢ be a formula and let E be a set of prime literal equivalences implied
by ¢. We can obtain another formula ¢’ by performing a
literal-substitution: replace each [(resp. —/) in ¢ with x (resp. —x) for
each x <> / € E. Note that, o = @' A A\, jcpx < 1.

Y. Lai et al (JLU; NUS) ExactMC 11/29

Capturing Literal Equivalence

Let ¢ be a formula and let E be a set of prime literal equivalences implied
by ¢. We can obtain another formula ¢’ by performing a
literal-substitution: replace each [(resp. —/) in ¢ with x (resp. —x) for
each x <> / € E. Note that, o = @' A A\, jcpx < 1.

Example

(1 V-x3VxaVxr)A(x1Vx3Vxs)A
(mx1 & x3) A (—xa <> x3) A (—x2 <> —x6) A (X5 <> X5)

Y. Lai et al (JLU; NUS) ExactMC 11/29

Capturing Literal Equivalence

Let ¢ be a formula and let E be a set of prime literal equivalences implied
by ¢. We can obtain another formula ¢’ by performing a
literal-substitution: replace each [(resp. —/) in ¢ with x (resp. —x) for
each x <> / € E. Note that, o = @' A A\, jcpx < 1.

Example

(1 V-x3VxaVxr)A(x1Vx3Vxs)A

(mx1 & x3) A (—xa <> x3) A (—x2 <> —x6) A (X5 <> X5)
=(x1Vx3Vxa Vxz)A(x1Vx3Vxs)A(x1 <> —x3) A (x1 ¢ xa) A (x2 <> Xp)

Y. Lai et al (JLU; NUS) ExactMC 11/29

Capturing Literal Equivalence

Let ¢ be a formula and let E be a set of prime literal equivalences implied
by ¢. We can obtain another formula ¢’ by performing a
literal-substitution: replace each [(resp. —/) in ¢ with x (resp. —x) for
each x <> / € E. Note that, o = @' A A\, jcpx < 1.

Example

(1 V-x3VxaVxr)A(x1Vx3Vxs)A

(=x1 <> x3) A (—xa > x3) A (x2 <> —x6) A (X5 > X5)
=(x1Vx3Vxa Vxz)A(x1Vx3Vxs)A(x1 <> —x3) A (x1 ¢ xa) A (x2 <> Xp)
=(x1 Vx7)A(x1 < —x3) A (x1 <> xa) A (x2 <> xp)

Y. Lai et al (JLU; NUS) ExactMC 11/29

Capturing Literal Equivalence

Let ¢ be a formula and let E be a set of prime literal equivalences implied
by ¢. We can obtain another formula ¢’ by performing a
literal-substitution: replace each [(resp. —/) in ¢ with x (resp. —x) for
each x <> / € E. Note that, o = @' A A\, jcpx < 1.

Example

(1 V-x3VxaVxr)A(x1Vx3Vxs)A

(=x1 <> x3) A (—xa > x3) A (x2 <> —x6) A (X5 > X5)
=(x1Vx3Vxa Vxz)A(x1Vx3Vxs)A(x1 <> —x3) A (x1 ¢ xa) A (x2 <> Xp)
=(x1 Vx7)A(x1 < —x3) A (x1 <> xa) A (x2 <> xp)

simpler :)

Y. Lai et al (JLU; NUS) ExactMC 11/29

Capturing Literal Equivalence

Definition (kernelized conjunction)

A kernelized conjunction node v is a conjunction node consisting of a core
child and a set of prime literal equivalences where for each literal
equivalence x < /, var(/) does not appear in the sub-graph rooted at the
core child.

Y. Lai et al (JLU; NUS) ExactMC 12 /29

Capturing Literal Equivalence

Definition (kernelized conjunction)

A kernelized conjunction node v is a conjunction node consisting of a core
child and a set of prime literal equivalences where for each literal
equivalence x < /, var(/) does not appear in the sub-graph rooted at the
core child.

(x1 Vx7) A (x1 < —x3) A (x1 < xa) A (x2 <> xp)

Y. Lai et al (JLU; NUS) ExactMC 12 /29

Capturing Literal Equivalence

Proposition

For a kernelized conjunction v over X with n prime literal equivalences, if
V(Chcore(v)) has m models over X, then J(v) has 55 models over X.

Y. Lai et al (JLU; NUS) ExactMC 13 /29

Capturing Literal Equivalence

Proposition

For a kernelized conjunction v over X with n prime literal equivalences, if
V(Chcore(v)) has m models over X, then J(v) has 55 models over X.

Example
(X1 V X7) N (Xl < —|X3) AN (X1 < X4) A (X2 < X6)

Y. Lai et al (JLU; NUS) ExactMC 13 /29

Capturing Literal Equivalence

Proposition

For a kernelized conjunction v over X with n prime literal equivalences, if
V(Chcore(v)) has m models over X, then J(v) has 55 models over X.

Example
(X1 V X7) N (Xl < —|X3) AN (X1 < X4) A (X2 < X6)

e x3 Vx7: 96

Y. Lai et al (JLU; NUS) ExactMC 13 /29

Capturing Literal Equivalence

Proposition

For a kernelized conjunction v over X with n prime literal equivalences, if
V(Chcore(v)) has m models over X, then J(v) has 55 models over X.

Example

(X1 V X7) N (Xl < —|X3) AN (X1 < X4) A (X2 < X6)
e x3 Vx7: 96
° [xl \/X7] A (x1 ¢ —x3): 48

Y. Lai et al (JLU; NUS) ExactMC 13 /29

Capturing Literal Equivalence

Proposition

For a kernelized conjunction v over X with n prime literal equivalences, if
V(Chcore(v)) has m models over X, then J(v) has 55 models over X.

Example
(X1 V X7) N (Xl < —|X3) AN (X1 < X4) A (X2 < X6)

e x3 Vx7: 96
° [xl \/X7] A (x1 ¢ —x3): 48
o [(x1Vx7)A (x> —x3)] A (x1 4+ xa): 24

Y. Lai et al (JLU; NUS) ExactMC 13 /29

Capturing Literal Equivalence

Proposition

For a kernelized conjunction v over X with n prime literal equivalences, if
V(Chcore(v)) has m models over X, then J(v) has 55 models over X.

Example
(x1 Vx7) A (x1 <> =x3) A (x1 <> xa) A (x2 <> xp)
e x3 Vx7: 96
° [xl \/X7] A (x1 ¢ —x3): 48
o [(x1Vx7)A (x> —x3)] A (x1 4+ xa): 24
o [(x1Vx7)A(x1 ¢ —x3) A(x1 > xa)] A (x2 < X): 12

Y. Lai et al (JLU; NUS) ExactMC 13 /29

@ Identifying New Language CCDD

Y. Lai et al (JLU; NUS) ExactMC 14 /29

Conjunction & Decision Diagram

Definition (Conjunction & Decision Diagram, CDD)

A Conjunction & Decision Diagram (CDD) is a rooted DAG wherein each
node u is labeled with a symbol sym(u):

o Leaf node: sym(u) = L (false) or T (true).
o Conjunction node: sym(u) = A, representing /\ ¢ ch(,) U(v).

@ Decision node: sym(u) is a variable, representing
[~sym(u) A 9(lo(u))] V [sym(u) A 9(hi(u))]

Y. Lai et al (JLU; NUS) ExactMC 15 /29

Constrained CDD

Definition (Constrained CDD, CCDD)

A CDD is called constrained if

@ Each decision node v and its decision descendant v satisfy
sym(u) # sym(v), and
@ Each conjunction node v is either: (i) decomposed; or (ii) kernelized.

Y. Lai et al (JLU; NUS) ExactMC 16 /29

Constrained CDD

The formula [[—'xl Axs A[(mx2 Axa) V(2 A (x3 < =xa))]] V [x1 A (x3

—x4) A (X3 <> X5)]:| A (x5 <> xp) can be represented as follows:

4
Y. Lai et al (JLU; NUS) ExactMC 17 /29

Linear Model Counting

Proposition

Given a CCDD node u over X and a node v in D,, we use CT(v) to

denote the number of models of ¥(v) over X. Then CT(u) can be

recursively computed in linear time:

(0 or 2X

e [Tvecn(y €T(v)
CT(u) = { CT(chcore(v))

2|Ch(u)|-1
CT(/o(u)) + CT(hi(u))
\ 2

where ¢ = 2(Ch(u)|=1)|X]

sym(u)= 1L or T
sym(u) =
)

sym(u) =

otherwise

Y. Lai et al (JLU; NUS) ExactMC

18 /29

© ExactMC: A Scalable Model Counter

Y. Lai et al (JLU; NUS) ExactMC 19 /29

Counting Algorithm

Algorithm 1: ExactMC(p, X)

1 if ¢ = false then return 0
if © = true then return 2/X|

if Cache(p) # nil then return Cache(y)
if SHOULDKERNELIZE(yp) then

if [[E]| > 0 then
< CONSTRUCTCORE(¢p, | E|); ¢ + ExactMC($, X)

2
3
4
5 E < DETECTLITEQU(¢)
6
7
8 return Cache(p) + 2|L#EJ\

9 W < DECOMPOSE(p)

10 if [W| > 1 then

11 C Hwew{ExactMC(w,X)}

12 return Cache(p) < W

13 else

14 x < PICKGOODVAR(yp)

15 ¢ + ExactMC(p[x — false], X); ¢1 < ExactMC(p[x — true], X)
16 return Cache(p) + %

Y. Lai et al (JLU; NUS) ExactMC 20/29

Counting Algorithm

Consider the CNF formula ¢:

o =(x1V-xVx3)A(—x1VxV-x3)
A (X1 V —xo V —|X3) A (X1 V xo V X3) A (—\Xl V —|X4)
A(aVxa)A(—xeV—xs) A (X V xs)

with X = {x1,...,xs5}.

Y. Lai et al (JLU; NUS) ExactMC 21/29

Counting Algorithm

LT LT

LT LT

22/29

ExactMC

Y. Lai et al (JLU; NUS)

Compiling Algorithm

32 32

X3 X3
Y Y
1 T

Y. Lai et al (JLU; NUS) ExactMC 23/29

@ Experiments

Y. Lai et al (JLU; NUS) ExactMC

Experiment Setup

o Computer: 2xE5-2690v3 CPUs with 24 cores and 96GB of RAM
@ Timeout: 3600 seconds
@ Memory limit: 4GB

Y. Lai et al (JLU; NUS) ExactMC

Total Performance

Table: Comparative counting performance between Ganak, c2d, Dsharp, miniC2D,
D4, ADDMC, and ExactMC, where each cell below tool refers to the number of

solved instances

domain Ganak c2d Dsharp miniC2D D4 ADDMC ExactMC
Bayesian-Networks 170 183 168 183 179 191 186
BlastedSMT 163 160 163 155 162 166 169
Circuit 49 50 47 48 49 45 51
Configuration 35 35 21 28 33 21 31
Inductive-Inference 18 19 15 15 18 3 22
Model-Checking 73 74 66 71 72 64 74
Planning 207 209 192 201 206 187 212
Program-Synthesis 96 76 84 68 90 52 108
QIF 32 32 21 17 26 24 32
Total (1114) 843 838 777 786 835 753 885

Y. Lai et al (JLU; NUS)

ExactMC

26 /29

Time Efficiency

3600 : :
—o— ExactMC 1 l
3000 4| —>— Ganak
—>— ¢c2d i %
224004 d4 |
2 miniC2D | . l # 7 g[
S 1800{| Dsharp {
5 ADDMC | i %5
E |
3 1200 f :
600 ; éf/j ng
0 y ' W'W -. 2 2 MK&‘K ’
700 725 750 775 800 825 850 875 900

instances

Y. Lai et al (JLU; NUS) ExactMC 27/29

© Conclusion and Future Work

Y. Lai et al (JLU; NUS) ExactMC 28/29

Conclusion and Future Work

@ The main contribution: the new language CCDD supporting linear
model counting and the practical model counter ExactMC.

o Future work: new decision heuristics, new caching schemes, etc.

Y. Lai et al (JLU; NUS) ExactMC 29/29

https://github.com/meelgroup/KCBox

Conclusion and Future Work

@ The main contribution: the new language CCDD supporting linear
model counting and the practical model counter ExactMC.

o Future work: new decision heuristics, new caching schemes, etc.

@ Open Source: https://github.com/meelgroup/KCBox

Y. Lai et al (JLU; NUS) ExactMC 29/29

https://github.com/meelgroup/KCBox

Conclusion and Future Work

@ The main contribution: the new language CCDD supporting linear
model counting and the practical model counter ExactMC.

o Future work: new decision heuristics, new caching schemes, etc.

@ Open Source: https://github.com/meelgroup/KCBox

Thank you for your attention!

Y. Lai et al (JLU; NUS) ExactMC 29/29

https://github.com/meelgroup/KCBox

	Capturing Literal Equivalence
	Identifying New Language CCDD
	ExactMC: A Scalable Model Counter
	Experiments
	Conclusion and Future Work

