The Power of Literal Equivalence in Model Counting

Yong Lai, Kuldeep S. Meel and Roland H. C. Yap

College of Computer Science and Technology – JLU Department of Computer Science – NUS

Model Counting

- Model Counting (#SAT): computing the number of satisfying assignments of a propositional formula φ .
- Applications: probabilistic inference, neural network verification, network reliability, computational biology, and the like.

Y. Lai et al (JLU; NUS)

Exact Model Counters

Search-based

Cachet, 2004

sharpSAT, 2006

Ganak, 2019

KC-based

c2d, 2004

Dsharp, 2012

miniC2D, 2015

D4, 2017

VE-based

ADDMC, 2019

Exact Model Counters

Proposition

Given a Decision-DNNF formula, the model count can be recursively computed in linear time.

Y. Lai et al (JLU; NUS)

Motivation

- There are a great number of sets of literal equivalences in solving model counting problems, e.g.,
 - Circuit 2bitadd_11: 11580 literal equivalences
 - Planning instance logistics.c: 757 literal equivalences
 - Program synthesis instance sygus_09A-1: 21851 literal equivalences

Motivation

- There are a great number of sets of literal equivalences in solving model counting problems, e.g.,
 - Circuit 2bitadd_11: 11580 literal equivalences
 - Planning instance logistics.c: 757 literal equivalences
 - Program synthesis instance sygus_09A-1: 21851 literal equivalences
- Decision-DNNF is not expressive enough to capture literal equivalences.

Motivation

- There are a great number of sets of literal equivalences in solving model counting problems, e.g.,
 - Circuit 2bitadd_11: 11580 literal equivalences
 - Planning instance logistics.c: 757 literal equivalences
 - Program synthesis instance sygus_09A-1: 21851 literal equivalences
- Decision-DNNF is not expressive enough to capture literal equivalences.
- Can we design an efficient model counting technique such that its trace is a generalization of Decision-DNNF to capture literal equivalences?

Contents

- Capturing Literal Equivalence
- 2 Identifying New Language CCDD
- 3 ExactMC: A Scalable Model Counter
- Experiments
- 5 Conclusion and Future Work

Contents

- Capturing Literal Equivalence
- 2 Identifying New Language CCDD
- 3 ExactMC: A Scalable Model Counter
- 4 Experiments
- 5 Conclusion and Future Work

- Literal equivalence: $I \leftrightarrow I'$ for two literals.
- Prime literal equivalences (unique representation): Given a set of literal equivalences E, for each equivalence class of literals with a minimum positive literal x, we pick a $x \leftrightarrow I$ for each $I \neq x$ in the class.

Example

Given $E = {\neg x_1 \leftrightarrow x_3, \neg x_4 \leftrightarrow x_3, \neg x_2 \leftrightarrow \neg x_6, x_5 \leftrightarrow x_5}$, we have

•
$$[x_1] = [\neg x_3] = [x_4] = \{x_1, \neg x_3, x_4\},$$

 $[\neg x_1] = [x_3] = [\neg x_4] = \{\neg x_1, x_3, \neg x_4\},$
 $[x_2] = [x_6] = \{x_2, x_6\},$
 $[\neg x_2] = [\neg x_6] = \{\neg x_2, \neg x_6\},$
 $[x_5] = \{x_5\},$
 $[\neg x_5] = [\neg x_5],$
 $[x_7] = [x_7],$
 $[\neg x_7] = [\neg x_7],$
...

 $\bullet \ \lfloor E \rfloor = \{x_1 \leftrightarrow \neg x_3, x_1 \leftrightarrow x_4, x_2 \leftrightarrow x_6\}.$

10 / 29

Y. Lai et al (JLU; NUS) ExactMC

Claim

Let φ be a formula and let E be a set of prime literal equivalences implied by φ . We can obtain another formula φ' by performing a *literal-substitution*: replace each I (resp. $\neg I$) in φ with x (resp. $\neg x$) for each $x \leftrightarrow I \in E$. Note that, $\varphi \equiv \varphi' \land \bigwedge_{x \leftrightarrow I \in E} x \leftrightarrow I$.

Claim

Let φ be a formula and let E be a set of prime literal equivalences implied by φ . We can obtain another formula φ' by performing a *literal-substitution*: replace each I (resp. $\neg I$) in φ with x (resp. $\neg x$) for each $x \leftrightarrow I \in E$. Note that, $\varphi \equiv \varphi' \land \bigwedge_{x \leftrightarrow I \in E} x \leftrightarrow I$.

Example

$$(x_1 \vee \neg x_3 \vee x_4 \vee x_7) \wedge (x_1 \vee x_3 \vee x_5) \wedge (\neg x_1 \leftrightarrow x_3) \wedge (\neg x_4 \leftrightarrow x_3) \wedge (\neg x_2 \leftrightarrow \neg x_6) \wedge (x_5 \leftrightarrow x_5)$$

Claim

Let φ be a formula and let E be a set of prime literal equivalences implied by φ . We can obtain another formula φ' by performing a *literal-substitution*: replace each I (resp. $\neg I$) in φ with x (resp. $\neg x$) for each $x \leftrightarrow I \in E$. Note that, $\varphi \equiv \varphi' \land \bigwedge_{x \leftrightarrow I \in E} x \leftrightarrow I$.

Example

$$\begin{array}{l} (x_1 \vee \neg x_3 \vee x_4 \vee x_7) \wedge (x_1 \vee x_3 \vee x_5) \wedge \\ (\neg x_1 \leftrightarrow x_3) \wedge (\neg x_4 \leftrightarrow x_3) \wedge (\neg x_2 \leftrightarrow \neg x_6) \wedge (x_5 \leftrightarrow x_5) \\ \equiv (x_1 \vee \neg x_3 \vee x_4 \vee x_7) \wedge (x_1 \vee x_3 \vee x_5) \wedge (x_1 \leftrightarrow \neg x_3) \wedge (x_1 \leftrightarrow x_4) \wedge (x_2 \leftrightarrow x_6) \end{array}$$

Y. Lai et al (JLU; NUS) ExactMC 11/29

Claim

Let φ be a formula and let E be a set of prime literal equivalences implied by φ . We can obtain another formula φ' by performing a *literal-substitution*: replace each I (resp. $\neg I$) in φ with x (resp. $\neg x$) for each $x \leftrightarrow I \in E$. Note that, $\varphi \equiv \varphi' \land \bigwedge_{x \leftrightarrow I \in E} x \leftrightarrow I$.

Example

$$\begin{array}{l} \left(x_{1} \vee \neg x_{3} \vee x_{4} \vee x_{7}\right) \wedge \left(x_{1} \vee x_{3} \vee x_{5}\right) \wedge \\ \left(\neg x_{1} \leftrightarrow x_{3}\right) \wedge \left(\neg x_{4} \leftrightarrow x_{3}\right) \wedge \left(\neg x_{2} \leftrightarrow \neg x_{6}\right) \wedge \left(x_{5} \leftrightarrow x_{5}\right) \\ \equiv \left(x_{1} \vee \neg x_{3} \vee x_{4} \vee x_{7}\right) \wedge \left(x_{1} \vee x_{3} \vee x_{5}\right) \wedge \left(x_{1} \leftrightarrow \neg x_{3}\right) \wedge \left(x_{1} \leftrightarrow x_{4}\right) \wedge \left(x_{2} \leftrightarrow x_{6}\right) \\ \equiv \left(x_{1} \vee x_{7}\right) \wedge \left(x_{1} \leftrightarrow \neg x_{3}\right) \wedge \left(x_{1} \leftrightarrow x_{4}\right) \wedge \left(x_{2} \leftrightarrow x_{6}\right) \end{array}$$

Claim

Let φ be a formula and let E be a set of prime literal equivalences implied by φ . We can obtain another formula φ' by performing a *literal-substitution*: replace each I (resp. $\neg I$) in φ with x (resp. $\neg x$) for each $x \leftrightarrow I \in E$. Note that, $\varphi \equiv \varphi' \land \bigwedge_{x \leftrightarrow I \in E} x \leftrightarrow I$.

Example

$$\begin{array}{l} \left(x_{1} \vee \neg x_{3} \vee x_{4} \vee x_{7}\right) \wedge \left(x_{1} \vee x_{3} \vee x_{5}\right) \wedge \\ \left(\neg x_{1} \leftrightarrow x_{3}\right) \wedge \left(\neg x_{4} \leftrightarrow x_{3}\right) \wedge \left(\neg x_{2} \leftrightarrow \neg x_{6}\right) \wedge \left(x_{5} \leftrightarrow x_{5}\right) \\ \equiv \left(x_{1} \vee \neg x_{3} \vee x_{4} \vee x_{7}\right) \wedge \left(x_{1} \vee x_{3} \vee x_{5}\right) \wedge \left(x_{1} \leftrightarrow \neg x_{3}\right) \wedge \left(x_{1} \leftrightarrow x_{4}\right) \wedge \left(x_{2} \leftrightarrow x_{6}\right) \\ \equiv \left(x_{1} \vee x_{7}\right) \wedge \left(x_{1} \leftrightarrow \neg x_{3}\right) \wedge \left(x_{1} \leftrightarrow x_{4}\right) \wedge \left(x_{2} \leftrightarrow x_{6}\right) \end{array}$$

simpler:)

Definition (kernelized conjunction)

A kernelized conjunction node v is a conjunction node consisting of a core child and a set of prime literal equivalences where for each literal equivalence $x \leftrightarrow I$, var(I) does not appear in the sub-graph rooted at the core child.

Y. Lai et al. (JLU; NUS) ExactMC 12 / 29

Definition (kernelized conjunction)

A kernelized conjunction node v is a conjunction node consisting of a core child and a set of prime literal equivalences where for each literal equivalence $x \leftrightarrow I$, var(I) does not appear in the sub-graph rooted at the core child.

Example

$$(x_1 \lor x_7) \land (x_1 \leftrightarrow \neg x_3) \land (x_1 \leftrightarrow x_4) \land (x_2 \leftrightarrow x_6)$$

Y. Lai et al (JLU; NUS) ExactMC 12 / 29

Proposition

For a kernelized conjunction v over X with n prime literal equivalences, if $\vartheta(\mathsf{ch}_{\mathsf{core}}(v))$ has m models over X, then $\vartheta(v)$ has $\frac{m}{2^n}$ models over X.

Proposition

For a kernelized conjunction v over X with n prime literal equivalences, if $\vartheta(\mathsf{ch}_{\mathsf{core}}(v))$ has m models over X, then $\vartheta(v)$ has $\frac{m}{2^n}$ models over X.

Example

$$(x_1 \lor x_7) \land (x_1 \leftrightarrow \neg x_3) \land (x_1 \leftrightarrow x_4) \land (x_2 \leftrightarrow x_6)$$

Proposition

For a kernelized conjunction v over X with n prime literal equivalences, if $\vartheta(\mathsf{ch}_{\mathsf{core}}(v))$ has m models over X, then $\vartheta(v)$ has $\frac{m}{2^n}$ models over X.

Example

$$(x_1 \lor x_7) \land (x_1 \leftrightarrow \neg x_3) \land (x_1 \leftrightarrow x_4) \land (x_2 \leftrightarrow x_6)$$

• $x_1 \lor x_7$: 96

Proposition

For a kernelized conjunction v over X with n prime literal equivalences, if $\vartheta(\mathsf{ch}_{\mathsf{core}}(v))$ has m models over X, then $\vartheta(v)$ has $\frac{m}{2^n}$ models over X.

Example

$$(x_1 \lor x_7) \land (x_1 \leftrightarrow \neg x_3) \land (x_1 \leftrightarrow x_4) \land (x_2 \leftrightarrow x_6)$$

- $x_1 \lor x_7$: 96
- $[x_1 \lor x_7] \land (x_1 \leftrightarrow \neg x_3)$: 48

Proposition

For a kernelized conjunction v over X with n prime literal equivalences, if $\vartheta(\mathsf{ch}_{\mathsf{core}}(v))$ has m models over X, then $\vartheta(v)$ has $\frac{m}{2^n}$ models over X.

Example

$$(x_1 \lor x_7) \land (x_1 \leftrightarrow \neg x_3) \land (x_1 \leftrightarrow x_4) \land (x_2 \leftrightarrow x_6)$$

- $x_1 \lor x_7$: 96
- $[x_1 \lor x_7] \land (x_1 \leftrightarrow \neg x_3)$: 48
- $[(x_1 \lor x_7) \land (x_1 \leftrightarrow \neg x_3)] \land (x_1 \leftrightarrow x_4)$: 24

Proposition

For a kernelized conjunction v over X with n prime literal equivalences, if $\vartheta(\mathsf{ch}_{\mathsf{core}}(v))$ has m models over X, then $\vartheta(v)$ has $\frac{m}{2^n}$ models over X.

Example

$$(x_1 \lor x_7) \land (x_1 \leftrightarrow \neg x_3) \land (x_1 \leftrightarrow x_4) \land (x_2 \leftrightarrow x_6)$$

- $x_1 \lor x_7$: 96
- $[x_1 \lor x_7] \land (x_1 \leftrightarrow \neg x_3)$: 48
- $\bullet \ \left[(x_1 \lor x_7) \land (x_1 \leftrightarrow \neg x_3) \right] \land (x_1 \leftrightarrow x_4): 24$
- $\bullet \ \left[(x_1 \lor x_7) \land (x_1 \leftrightarrow \neg x_3) \land (x_1 \leftrightarrow x_4) \right] \land (x_2 \leftrightarrow x_6) : \ 12$

Y. Lai et al (JLU; NUS) ExactMC 13/29

Contents

- Capturing Literal Equivalence
- 2 Identifying New Language CCDD
- 3 ExactMC: A Scalable Model Counter
- 4 Experiments
- 5 Conclusion and Future Work

Conjunction & Decision Diagram

Definition (Conjunction & Decision Diagram, CDD)

A Conjunction & Decision Diagram (CDD) is a rooted DAG wherein each node u is labeled with a symbol sym(u):

- Leaf node: $sym(u) = \bot (false)$ or $\top (true)$.
- Conjunction node: $sym(u) = \land$, representing $\bigwedge_{v \in Ch(v)} \vartheta(v)$.
- Decision node: sym(u) is a variable, representing $[\neg sym(u) \land \vartheta(lo(u))] \lor [sym(u) \land \vartheta(hi(u))]$

Constrained CDD

Definition (Constrained CDD, CCDD)

A CDD is called constrained if

- Each decision node u and its decision descendant v satisfy $sym(u) \neq sym(v)$, and
- ullet Each conjunction node v is either: (i) decomposed; or (ii) kernelized.

Y. Lai et al (JLU; NUS) ExactMC 16/29

Constrained CDD

Example

The formula $\left[\left[\neg x_1 \wedge x_5 \wedge \left[\left(\neg x_2 \wedge x_4\right) \vee \left(x_2 \wedge \left(x_3 \leftrightarrow \neg x_4\right)\right)\right]\right] \vee \left[x_1 \wedge \left(x_3 \leftrightarrow \neg x_4\right) \wedge \left(x_3 \leftrightarrow x_5\right)\right]\right] \wedge \left(x_5 \leftrightarrow x_6\right)$ can be represented as follows:

Linear Model Counting

Proposition

Given a CCDD node u over X and a node v in \mathcal{D}_u , we use CT(v) to denote the number of models of $\vartheta(v)$ over X. Then CT(u) can be recursively computed in linear time:

$$CT(u) = \begin{cases} 0 \text{ or } 2^{|X|} & \text{sym}(u) = \bot \text{ or } \top \\ c^{-1} \cdot \prod_{v \in Ch(u)} CT(v) & \text{sym}(u) = \land_d \\ \frac{CT(ch_{core}(v))}{2^{|Ch(u)|-1}} & \text{sym}(u) = \land_k \\ \frac{CT(lo(u)) + CT(hi(u))}{2} & \text{otherwise} \end{cases}$$

where $c = 2^{(|Ch(u)|-1)\cdot |X|}$.

← ← □ ト ← □ ト ← □ ト ← □ ← ○ へ ○ ○

Y. Lai et al (JLU; NUS) ExactMC 18/29

Contents

- Capturing Literal Equivalence
- 2 Identifying New Language CCDD
- 3 ExactMC: A Scalable Model Counter
- 4 Experiments
- 5 Conclusion and Future Work

Algorithm 1: ExactMC(φ , X)

```
1 if \varphi = false then return 0
2 if \varphi = true then return 2^{|X|}
3 if Cache(\varphi) \neq nil then return Cache(\varphi)
4 if ShouldKernelize(\varphi) then
          E \leftarrow \text{DetectLitEqu}(\varphi)
        if ||E|| > 0 then
                   \hat{\varphi} \leftarrow \text{ConstructCore}(\varphi, |E|); c \leftarrow \text{ExactMC}(\hat{\varphi}, X)
                  return Cache(\varphi) \leftarrow \frac{c}{2||E||}
9 \Psi \leftarrow \text{Decompose}(\varphi)
10 if |\Psi|>1 then
        c \leftarrow \prod_{\psi \in \mathcal{W}} \{ \mathsf{ExactMC}(\psi, X) \}
11
            return Cache(\varphi) \leftarrow \frac{c}{2(|\Psi|-1)\cdot|X|}
12
13 else
14
           x \leftarrow \text{PickGoodVar}(\varphi)
            c_0 \leftarrow \mathsf{ExactMC}(\varphi[x \mapsto \mathit{false}], X); c_1 \leftarrow \mathsf{ExactMC}(\varphi[x \mapsto \mathit{true}], X)
15
           return Cache(\varphi) \leftarrow \frac{c_0 + c_1}{2}
16
```

Counting Algorithm

Example

Consider the CNF formula φ :

$$\varphi = (\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)$$
$$\land (x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_4)$$
$$\land (x_1 \lor x_4) \land (\neg x_2 \lor \neg x_5) \land (x_2 \lor x_5)$$

with $X = \{x_1, ..., x_5\}$.

Y. Lai et al (JLU; NUS) ExactMC

Counting Algorithm

Compiling Algorithm

Contents

- Capturing Literal Equivalence
- 2 Identifying New Language CCDD
- ExactMC: A Scalable Model Counter
- 4 Experiments
- 5 Conclusion and Future Work

Experiment Setup

• Computer: 2xE5-2690v3 CPUs with 24 cores and 96GB of RAM

• Timeout: 3600 seconds

• Memory limit: 4GB

Total Performance

Table: Comparative counting performance between Ganak, c2d, Dsharp, miniC2D, D4, ADDMC, and ExactMC, where each cell below tool refers to the number of solved instances

domain	Ganak	c2d	Dsharp	miniC2D	D4	ADDMO	C ExactMC
Bayesian-Networks	170	183	168	183	179	191	186
BlastedSMT	163	160	163	155	162	166	169
Circuit	49	50	47	48	49	45	51
Configuration	35	35	21	28	33	21	31
Inductive-Inference	18	19	15	15	18	3	22
Model-Checking	73	74	66	71	72	64	74
Planning	207	209	192	201	206	187	212
Program-Synthesis	96	76	84	68	90	52	108
QIF	32	32	21	17	26	24	32
Total (1114)	843	838	777	786	835	753	885

Time Efficiency

27 / 29

Contents

- Capturing Literal Equivalence
- 2 Identifying New Language CCDD
- 3 ExactMC: A Scalable Model Counter
- 4 Experiments
- 5 Conclusion and Future Work

Conclusion and Future Work

- The main contribution: the new language CCDD supporting linear model counting and the practical model counter ExactMC.
- Future work: new decision heuristics, new caching schemes, etc.

Conclusion and Future Work

- The main contribution: the new language CCDD supporting linear model counting and the practical model counter ExactMC.
- Future work: new decision heuristics, new caching schemes, etc.
- Open Source: https://github.com/meelgroup/KCBox

Conclusion and Future Work

- The main contribution: the new language CCDD supporting linear model counting and the practical model counter ExactMC.
- Future work: new decision heuristics, new caching schemes, etc.
- Open Source: https://github.com/meelgroup/KCBox

Thank you for your attention!