



#### GANAK: A Scalable Probabilistic Exact Model Counter

Shubham Sharma<sup>†</sup>, Mate Soos<sup>‡</sup>, Subhajit Roy<sup>†</sup> and Kuldeep S. Meel<sup>‡</sup>

†Indian Institute of Technology Kanpur, India ‡National University of Singapore

Model Counting Workshop 2020

<sup>&</sup>lt;sup>1</sup>This work is published in IJCAI 2019.

### Propositional Model Counting

- Given:
  - Propositional formula F (CNF) over a set of variables X
- Propositional Model Counting (#SAT):
  - Compute the number of satisfying assignments of F
- #SAT is a #P complete problem

### Propositional Model Counting

- Probabilistic Exact Model Counting
  - Given a propositional formula F (CNF) and confidence  $\delta \in (0,1]$ , counter returns count such that:

$$\mathsf{Pr}ig[|\mathsf{Solutions}\;\mathsf{of}\;\mathsf{F}|=\mathsf{count}ig]\geq 1-\delta$$

<sup>&</sup>lt;sup>2</sup>Chakraborty et al., 2019

### Propositional Model Counting

- Probabilistic Exact Model Counting
  - Given a propositional formula F (CNF) and confidence  $\delta \in (0,1]$ , counter returns count such that:

$$\mathsf{Pr}ig[|\mathsf{Solutions}\;\mathsf{of}\;\mathsf{F}|=\mathsf{count}ig]\geq 1-\delta$$

 Probabilistic Exact Model Counting is almost as hard as Exact Model Counting<sup>2</sup>

<sup>&</sup>lt;sup>2</sup>Chakraborty et al., 2019

#### Applications of Propositional Model Counting



• Decision Process:

$$\begin{array}{ll} - & (F \wedge I) \vee (F \wedge \neg I) \\ - & \#(F) = \#(F \wedge I) + \#(F \wedge \neg I) \end{array}$$
 mutually inconsistent

Decision Process:

$$-(F \wedge I) \vee (F \wedge \neg I)$$
 mutually inconsistent 
$$-\#(F) = \#(F \wedge I) + \#(F \wedge \neg I)$$

• Component Decomposition:

$$-F = \Delta_1 \wedge \Delta_2 \cdots \Delta_n \quad \Delta_1 \cdots \Delta_n \text{ does not share any variables}$$

$$-\#(F) = \#(\Delta_1) \times \#(\Delta_2) \cdots \times \#(\Delta_n) \quad \text{mutually disjoint}$$

Decision Process:

$$-(F \wedge I) \vee (F \wedge \neg I)$$
 mutually inconsistent 
$$-\#(F) = \#(F \wedge I) + \#(F \wedge \neg I)$$

• Component Decomposition:

$$-F = \Delta_1 \wedge \Delta_2 \cdots \Delta_n$$
  $\Delta_1 \cdots \Delta_n$  does not share any variables  $-\#(F) = \#(\Delta_1) \times \#(\Delta_2) \cdots \times \#(\Delta_n)$  mutually disjoint

• Component Caching:

| Key Value  |                |
|------------|----------------|
| $\Delta_1$ | $\#(\Delta_1)$ |
| $\Delta_2$ | $\#(\Delta_2)$ |

- Decision Process:
  - $-(F \wedge I) \vee (F \wedge \neg I)$  mutually inconsistent  $-\#(F) = \#(F \wedge I) + \#(F \wedge \neg I)$
- Component Decomposition:
  - $-F = \Delta_1 \wedge \Delta_2 \cdots \Delta_n$   $\Delta_1 \cdots \Delta_n$  does not share any variables  $-\#(F) = \#(\Delta_1) \times \#(\Delta_2) \cdots \times \#(\Delta_n)$  mutually disjoint
- Component Caching:

| Key Value  |                |
|------------|----------------|
| $\Delta_1$ | $\#(\Delta_1)$ |
| $\Delta_2$ | $\#(\Delta_2)$ |

Conflict Driven Clause Learning

$$F = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_4 \lor x_5) \land (\neg x_1 \lor x_2 \lor x_3)$$

$$F = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_4 \lor x_5) \land (\neg x_1 \lor x_2 \lor x_3)$$

$$x_1$$

$$(x_2 \lor x_3)\{x_4, x_5\}$$

| Key                          | Value |  |
|------------------------------|-------|--|
| $(x_2 \lor x_3)$             | 3     |  |
| $(x_2 \lor x_3)\{x_4, x_5\}$ | 12    |  |



| Key                          | Value |
|------------------------------|-------|
| $(x_2 \vee x_3)$             | 3     |
| $(x_2 \lor x_3)\{x_4, x_5\}$ | 12    |



| Key                          | Value |  |
|------------------------------|-------|--|
| $(x_2 \lor x_3)$             | 3     |  |
| $(x_2 \lor x_3)\{x_4, x_5\}$ | 12    |  |
| $(x_4 \lor x_5)$             | 3     |  |



| Key                                   | Value |
|---------------------------------------|-------|
| $(x_2 \lor x_3)$                      | 3     |
| $(x_2 \lor x_3)\{x_4, x_5\}$          | 12    |
| $(x_4 \vee x_5)$                      | 3     |
| $(x_2 \lor x_3) \land (x_4 \lor x_5)$ | 9     |



| Key                                                                                            |    |
|------------------------------------------------------------------------------------------------|----|
| $(x_2 \lor x_3)$                                                                               | 3  |
| $(x_2 \lor x_3)\{x_4, x_5\}$                                                                   | 12 |
| $(x_4 \lor x_5)$                                                                               | 3  |
| $(x_2 \lor x_3) \land (x_4 \lor x_5)$                                                          | 9  |
| $F = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_4 \lor x_5) \land (\neg x_1 \lor x_2 \lor x_3)$ | 21 |

#### Our Contribution

- Probabilistic Component Caching (PCC)
- Variable Branching Heuristic (CSVSADS)
- Phase Selection Heuristic (PC)
- Independent Support (IS)
- Restarts (LSO)
- Exponentially Decaying Randomness (EDR)

# Probabilistic Component Caching (PCC)

$$F = (\neg x_3 \lor \neg x_5 \lor x_6) \land (\neg x_1 \lor x_4 \lor \neg x_6) \land (x_2 \lor x_3 \lor x_6)$$

| Schema           | Key                                    | Value |
|------------------|----------------------------------------|-------|
| STD <sup>3</sup> | -3, -5, 6, 0, -1, 4, -6, 0, 2, 3, 6, 0 | #(F)  |
| HC⁴              | 1, 2, 3, 4, 5, 6, 1, 2, 3              | #(F)  |
| GANAK            | Hash of HC/STD                         | #(F)  |

<sup>&</sup>lt;sup>3</sup>Sang et al., 2005

<sup>&</sup>lt;sup>4</sup>Thurley, 2006

# Variable Branching Heuristic (CSVSADS)

- $\bullet \ \, \mathsf{Score}(\mathsf{VSADS})^5 = \underline{\mathsf{p}} \times \mathsf{Score}(\mathsf{VSIDS}) + \underline{\mathsf{q}} \times \mathsf{Score}(\mathsf{DLCS})$ 
  - VSIDS: Prioritize variables present in recently generated conflict clauses
  - DLCS: Prioritize the highest occurring variable in the residual formula

<sup>&</sup>lt;sup>5</sup>Sang et al., 2005

# Variable Branching Heuristic (CSVSADS)

- $\bullet \ \, \mathsf{Score}(\mathsf{VSADS})^5 = \mathsf{p} \times \mathsf{Score}(\mathsf{VSIDS}) + \mathsf{q} \times \mathsf{Score}(\mathsf{DLCS})$ 
  - VSIDS: Prioritize variables present in recently generated conflict clauses
  - DLCS: Prioritize the highest occurring variable in the residual formula
- Score(CSVSADS) =  $\underline{\alpha \times CacheScore} + \beta \times Score(VSADS)$ 
  - Prioritize variables not present in the components which are recently added to the cache

<sup>&</sup>lt;sup>5</sup>Sang et al., 2005

# Phase Selection Heuristic (PC)

$$\mathsf{DLIS}^6 \left\{ \begin{array}{ll} \mathit{I} & |\mathit{I}| \geq |\neg \mathit{I}| \\ \neg \mathit{I} & \mathit{otherwise} \end{array} \right.$$

# Phase Selection Heuristic (PC)

$$\mathsf{DLIS}^6 \left\{ \begin{array}{ll} \mathit{I} & |\mathit{I}| \geq |\neg \mathit{I}| \\ \neg \mathit{I} & \mathit{otherwise} \end{array} \right.$$

• We reduce our trust on DLIS by adding randomness in DLIS if the difference in |I| and  $|\neg I|$  is not overwhelmingly high

#### Tool

- GANAK<sup>7</sup>: First Scalable Probabilistic Exact Model Counter
- Given a propositional formula F (CNF) and confidence  $\delta \in (0,1]$  GANAK $(F,\delta)$  returns count such that

$$\Pr[|Sol(F)| = \mathtt{count}] \ge 1 - \delta$$

Tool is available at: https://github.com/meelgroup/ganak

<sup>&</sup>lt;sup>7</sup>GANAK (गणक in Sanskrit) refers to a device that counts

### **Experimental Evaluation**

 Benchmarks arising from probabilistic reasoning, plan recognition, DQMR networks, ISCAS89 combinatorial circuits, quantified information flow, etc

#### **Experimental Evaluation**

- Benchmarks arising from probabilistic reasoning, plan recognition, DQMR networks, ISCAS89 combinatorial circuits, quantified information flow, etc
- Objectives:
  - Study the impact of different configurations of heuristics
  - Study the performance of GANAK with respect to the state-of-the-art model counters
- $\delta =$  0.05, Total Memory = 4 GB, Component Cache Size = 2 GB, Timeout=5000 secs

## Experimental Evaluation: Individual Analysis



• GANAK performed best when all the heuristics are turned on

### Experimental Evaluation: Comparison with other tools



• In our experiments, the model count returned by GANAK was equal to the exact model count for all benchmarks

#### Thank You

Tool is available at: https://github.com/meelgroup/ganak

