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Ralph Abboud , İsmail İlkan Ceylan and Radoslav Dimitrov
Department of Computer Science, University of Oxford

{firstname.lastname}@cs.ox.ac.uk

Abstract

Weighted model counting (WMC) consists of computing the
weighted sum of all satisfying assignments of a propositional
formula. WMC is well-known to be #P-hard for exact solv-
ing, but admits a fully polynomial randomized approximation
scheme (FPRAS) when restricted to DNF structures. In this
work, we study weighted model integration, a generalization
of weighted model counting which involves real variables in
addition to propositional variables, and pose the following
question: Does weighted model integration on DNF struc-
tures admit an FPRAS? Building on classical results from
approximate volume computation and approximate weighted
model counting, we show that weighted model integration
on DNF structures can indeed be approximated for a class
of weight functions. Our approximation algorithm is based
on three subroutines, each of which can be a weak (i.e., ap-
proximate), or a strong (i.e., exact) oracle, and in all cases,
comes along with accuracy guarantees. We experimentally
verify our approach over randomly generated DNF instances
of varying sizes, and show that our algorithm scales to large
problem instances, involving up to 1K variables, which are
currently out of reach for existing, general-purpose weighted
model integration solvers.

1 Introduction
Weighted model counting (WMC) has been introduced as
a unifying approach for encoding probabilistic inference
problems that arise in various formalisms. Informally,
given a propositional formula, and a weight function that
assigns every truth assignment a weight, WMC amounts
to computing the weighted sum of all the satisfying as-
signments (Gomes, Sabharwal, and Selman 2009). Many
probabilistic inference problems in probabilistic graphical
models (Koller and Friedman 2009), probabilistic plan-
ning (Domshlak and Hoffmann 2007), probabilistic logic
programming (De Raedt, Kimmig, and Toivonen 2007),
probabilistic databases (Suciu et al. 2011), and probabilis-
tic knowledge bases (Borgwardt, Ceylan, and Lukasiewicz
2017) can be reduced to a form of WMC.

Despite its wide applicability, WMC is limited to dis-
crete domains and thus cannot be applied to domains in-
volving real variables, and this motivated the study of
weighted model integration (WMI) (Belle, Passerini, and
Van Den Broeck 2015), as a generalization of WMC.

Building on the foundations of satisfiability modulo the-
ories (SMT) (Barrett et al. 2009) , WMI can capture hy-
brid domains with mixtures of Boolean and continuous
variables. Briefly, the input to WMI is a hybrid propo-
sitional formula that additionally involves arithmetic con-
straints (e.g., linear constraints over real, or integer vari-
ables), and a weight function that defines a density for ev-
ery truth assignment of the formula. WMI is then the task
of computing the sum of integrals over the densities of
all the satisfying assignments of the given hybrid proposi-
tional formula (Belle, Passerini, and Van Den Broeck 2015;
Morettin, Passerini, and Sebastiani 2019).

The standard formulation of WMI assumes a formula in
conjunctive normal form (CNF) as an input, and to date,
there is no study of WMI which is specifically tailored to
formulas in disjunctive normal form (DNF). This is surpris-
ing, as both variants are widely investigated for WMC. We
write WMI(CNF) and WMI(DNF) in the sequel to distin-
guish between these cases. These problems are clearly #P-
hard for exact solving, as are their respective special cases
WMC(CNF) and WMC(DNF) (Valiant 1979). For approx-
imate solving, however, there is a strong contrast in com-
putational complexity between variants of weighted model
counting problems: WMC(DNF) has a fully polynomial
randomized algorithm scheme (FPRAS) (Karp, Luby, and
Madras 1989), producing polynomial-time approximations
with guarantees, whereas WMC(CNF) is NP-hard to ap-
proximate. The latter polynomial-time inapproximability re-
sult immediately propagates to WMI(CNF), while the ap-
proximability status of WMI(DNF) remains open. In this
paper, we pose the following question: Does WMI(DNF)
admit an FPRAS?

We answer this question in the affirmative, and provide
a polynomial-time algorithm for WMI(DNF) with proba-
bilistic accuracy guarantees. The intuition behind our re-
sult is based on two observations. First, the special case of
WMI(DNF) without any arithmetic constraints corresponds
to WMC(DNF) which has an FPRAS (Karp, Luby, and
Madras 1989). Second, the special case of WMI(DNF) with
constant weight functions, and without any Booleans, corre-
sponds to computing the volume of unions of convex bodies,
which also has an FPRAS (Bringmann and Friedrich 2010).
Our result builds on these results, and extends them, by al-
lowing extra constructs essential for WMI, while preserving



the approximation guarantees. Our main contributions can
be summarized as follows:
– We propose an efficient approximation algorithm for

WMI(DNF), called APPROXWMI, extending the algo-
rithm given in (Bringmann and Friedrich 2010).

– We prove that APPROXWMI is an FPRAS provided that
the weight functions are concave, and can be factorized
into products of weights of literals. We provide asymp-
totic bounds for the running time of the algorithm.

– We extend APPROXWMI to the case where the products
of weights assumption is relaxed, and provide asymptotic
bounds for the running time of the algorithm.

– We experimentally verify our approach, using a strong
oracle for computing the volume of a body. Our exper-
iments suggest that APPROXWMI solves large problem
instances, including up to 1K variables, which are out of
reach for any existing, general-purpose WMI solver.

The full paper is to appear at KR 2020, and is available at
https://arxiv.org/pdf/2002.06726.pdf
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Borgwardt, S.; Ceylan, İ. İ.; and Lukasiewicz, T. 2017.
Ontology-mediated queries for probabilistic databases. In
Proc. of AAAI.
Bringmann, K., and Friedrich, T. 2010. Approximating the
volume of unions and intersections of high-dimensional ge-
ometric objects. Comput. Geom. 43(6-7):601–610.
De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007.
ProbLog: A probabilistic prolog and its application in link
discovery. In Proc. of IJCAI.
Domshlak, C., and Hoffmann, J. 2007. Probabilistic plan-
ning via heuristic forward search and weighted model count-
ing. JAIR 30(1).
Gomes, C. P.; Sabharwal, A.; and Selman, B. 2009. Model
counting. In Handbook of Satisfiability. IOS Press.
Karp, R. M.; Luby, M.; and Madras, N. 1989. Monte-Carlo
approximation algorithms for enumeration problems. J. Al-
gorithms 10(3).
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT Press.
Morettin, P.; Passerini, A.; and Sebastiani, R. 2019. Ad-
vanced SMT techniques for weighted model integration. AIJ
275:1 – 27.
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