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1 Abstract

Given a Boolean formula F , the problem of propositional model counting, also referred to
as #SAT, seeks to compute the number of solutions of F . Model counting is a fundamental
problem with a wide variety of applications ranging from quantified information flow, network
reliability, planning, probabilistic reasoning, and the like [19, 2, 9, 12, 17, 10, 3]. For example,
given a graph G such that each of its edges fails with some probability and two nodes, s and t,
the problem of computing probability of existence of a path from s to t can be reduced to that
of propositional model counting [10].

In his seminal paper, Valiant showed that #SAT is #P-complete, where #P is the set of
counting problems associated with NP decision problems [26]. Theoretical investigations of #P
have led to the discovery of deep connections in complexity theory, and there is strong evidence
for its hardness. In particular, Toda proved that every problem in the polynomial hierarchy
could be solved by just one call to a #P oracle; more formally, PH ⊆ P#P [25].

The earliest efforts to #SAT focused on extending the Davis-Putnam-Loveland-Longemann
(DPLL) procedure [8] by incrementally computing the number of solutions and adding appropri-
ate multiplicative factors after a partial solution was found [4]. Subsequently, Relsat focused on
partitioning the formula into components with a disjoint set of variables. In a significant break-
through, Sang et al. pioneered the idea of component caching combined with Conflict Driven
Clause Learning (CDCL) architecture in their exact counter Cachet [20, 21]. Thurley [24] im-
proved upon Cachet’s component caching scheme along with tighter engineering integration and
developed sharpSAT. Several knowledge compilation-based counters, often a hybrid of static and
dynamic decomposition, have been proposed over the past few years along with novel techniques
for preprocessing [14, 13, 15].

Despite significant progress in model counting over the years, the core components of the
architecture of dynamic decomposition based techniques have remained constant. Further-
more, SAT solving have witnessed significant improvements over the past decade owing to the
development of new heuristics [16, 18, 11]. Moreover, recent years have witnessed the rise of
approximate model counters owing to the combination of hashing-based frameworks and use of
independent support [23, 12, 5, 6, 22]. In this context, we revisit the architecture of the state-
of-the-art exact model counter, sharpSAT, and seek to redesign the architecture and augment
the existing techniques with new heuristics.

The primary contribution of this work is a novel architecture, called Ganak1, that deviates
significantly from sharpSAT as follows:

∗This paper is published in International Joint Conference on Artificial Intelligence (IJCAI), 2019.
†The open source tool along with benchmarks is available at https://github.com/meelgroup/ganak
1Ganak ( in Sanskrit) refers to a device that counts.

https://github.com/meelgroup/ganak


GANAK: A Scalable Probabilistic Exact Model Counter Sharma, Roy, Soos and Meel

1. We investigate the usage of universal hash functions for exact model counting. To this
end, we design, to the best of our knowledge, the first probabilistic component cache
scheme and the first probabilistic exact model counter. In particular, Ganak takes in
a formula F and a confidence parameter δ as input and returns count such that count

is the number of solutions of F with confidence at least 1 − δ. Note that probabilistic
exact model counting is almost as hard as exact model counting and significantly hard
compared to probabilistic approximate model counting [7].

2. We propose new branching heuristic that seek to achieve the best of both worlds: perform
branching on variables so as to maximize cache hits and perform branching on variables
that lead to conflict as soon as possible.

Moreover, we propose new heuristics: phase selection heuristic, independent support, expo-
nentially decaying randomness and learn and start over, and perform extensive experiments to
study the effect of these heuristics, in isolation and in combination. Finally, we use our experi-
ence from the above study to build Ganak that inherits current advancements in SAT solving
and model counting, improves upon them and contributes new ideas, thereby outperforming
state-of-the-art model counters. In particular, Ganak outperforms state-of-the-art exact and
approximate model counters sharpSAT and ApproxMC3 respectively, both in terms of PAR-22

score and the number of instances solved. Moreover, in our experiments, the model count
returned by Ganak was equal to the exact model count for all the benchmarks.
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