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Abstract

Based on our work accepted at SAT’20, we present a novel approach for enumerating
partial models of a propositional formula, inspired by how the theory and SAT solvers inter-
act in lazy SMT. Using various forms of dual reasoning allows our CDCL-based algorithm
to enumerate partial models without exploring and shrinking full models. Chronological
backtracking renders the use of blocking clauses obsolete. Our focus is on projected model
enumeration without repetition, hence adapting it to support projected model counting is
straightforward. In this presentation-only talk, we introduce the key ideas with focus on
the formalization.

The task of computing the number of models of a propositional formula, also referred to
as #SAT, is used, e.g., in verification [3, 4, 5, 6, 7], reasoning [14, 2, 10], diagnosis [8], and
planning [1, 18]. We define the model count of a formula F as the number of its total satisfying
assignments. A partial satisfying assignment I, i.e., a model in which some variables remain
unassigned, therefore represents a set of total models of F . We call the number of total models
of F represented by I the model count of F under I. The model count of F equals the sum of
the model counts of F under its (possibly partial) pairwise contradicting satisfying assignments.

If only a subset X of the variables is significant, then the models are projected onto these
relevant variables. We say that we existentially quantify the formula over the irrelevant vari-
ables Y and write ∃Y [F (X,Y ) ], where F (X,Y ) is a formula over the sets of variables X and Y
such that X ∩ Y = ∅. Projected model counting is applied in product configuration [19] and
planning [1, 18]. Recently, different approaches have been presented to address exact projected
model counting. Our previous approach [11] is based on dual reasoning and enables the detection
of partial models. Lagniez and Marquis [9] presented a recursive approach, while Sharma et
al. [16] extended the solver sharpSAT [17] with projection capabilities.

Similarly to the non-projected case, the model count of ∃Y [F (X,Y ) ], i.e., the model count
of F projected onto X, equals the sum of the model counts of ∃Y [F (X,Y ) ] under its (possibly
partial) pairwise contradicting satisfying assignments projected onto X. To determine it, we first
compute the pairwise contradicting partial models of F projected onto X using the algorithm
presented in our work [13] accepted at SAT’20. In that work, we enumerate those models without
repetition. Our method is inspired by how the theory and SAT solvers interact in lazy SMT [15].
Our basic idea was to detect partial assignments entailing the formula on-the-fly. We present four
entailment tests of different strength and computational cost and a formal calculus extending
our previous one [12]. Consider the formula F = (x ∧ y) ∨ (x ∧ ¬y) over variables X = {x} and
Y = {y}, and I = x ranging over X ∪ Y . Clearly I entails F , but a SAT solver cannot detect
that. Combining dual reasoning with oracle calls allows avoiding shrinking total models. Finally,
by adopting chronological CDCL we circumvent the use of blocking clauses. Our algorithm [13]
yields pairwise contradicting partial models. Its adaptation to support exact projected model
counting is therefore straightforward and requires only slight modifications. In essence, instead
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of recording partial models, we directly sum up their model counts. In this presentation-only
talk, we introduce the key ideas with focus on their formalization.
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