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Abstract

State-of-the-art model counters provide a vari-
ety of branching heuristics, aiding users in con-
figuring these solvers so they perform well on
specific types of problem instances. However,
they provide a limited choice of cache man-
agement strategies. We argue that the state of
the art in model counting could benefit from
more sophisticated heuristics for cache man-
agement. We motivate this with preliminary
results and propose to use machine learning to
develop new cache management heuristics.

Summary

Over the last two decades, exact model
counters have become increasingly fast, due
to conflict-driven clause learning (CDCL) [4],
component caching [4] and new variable
branching heuristics [0, 8].

Model counters store counts of subformu-
lae (components) in a cache. If a previously
processed subformula is encountered later in
the search, its model count can be retrieved
from the cache, instead of recomputed. Innova-
tion in component encodings made their mem-
ory usage more compact, making it possible to
store more partial model counts in the same
amount of memory [8]. However, memory is
a limited resource, and even solvers that use
compactly encoded components will eventually
fill their cache. Modern model counters typi-
cally clean up in a first-in-first-out manner.

We observe that (1) this strategy could be
improved by developing heuristics that clean
up components based on criteria other than
age, such as predicted number of cache hits
during the rest of the search or predicted com-
putational costs of recomputing model counts,
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and (2) model counters store any component in
the cache, regardless of their potential utility
for the rest of the search process. We also ob-
serve that the use of component caching with
a limited amount of memory can facilitate a
favourable time-space trade-off [1]. This is im-
portant, because memory is ultimately a hard
constraint, while time is less so.

Therefore, we aim to develop new storage
and deletion heuristics for more efficient cache
management. Our ultimate goal is to solve
model counting problems faster, without in-
creasing the available memory for caching.
Here, we present first steps towards achieving
that goal. First, we empirically determine the
running time reduction we can obtain by au-
tomatically configuring existing solver param-
eters, motivating our belief that innovation in
cache management can further reduce running
time. We then present our ideas on how to
create cache management schemes for faster
model counting.

To gauge how much model counters might
benefit from better cache management heuris-
tics, we took the non-probabilistic version of
state-of-the-art model counter GANAK [6] and
exposed many hard-coded design choices, in
the form of configurable parameters.

We also added three simple cache clean-up
schemes: one based on the number of total and
recent cache hits [8], one based on the time
since the last hit, and one that deletes com-
ponents uniformly at random. This resulted
in a highly configurable model counter. We
then constrained the amount of memory avail-
able for caching component counts to 100 MB
and applied automated algorithm configuration
(AAC) [2] to the (newly exposed) parameters
of GANAK, to find optimised configurations for
two specific types of problem instances.

We ran our experiments on instances from
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Figure 1: Running time comparison between
default and optimised configurations of GANAK
for instances of two benchmarks. Cutoff time:
600 CPU sec; maximum cache size: 100 MB.

Table 1: PAR10 values in CPU sec, number
of time outs and total number of instances
for default and optimised configurations for in-
stances of two benchmarks.

GRID DQMR
PAR10 t/o  PAR10 t/o
Default 2483  36/90 949 9/64
Optimised 28 0/90 481  4/64

unweighted versions of the GRID and DQMR
benchmark sets [5], as these contain suffi-
ciently many instances whose solving times
with GANAK are within a reasonable range. We
selected 180 and 127 instances, respectively.
We randomly split each dataset up into two
equally-sized subsets: one for configuration,
and one for evaluation. The cache size is lim-
ited to 100 MB, to ensure the cache is filled
and cleaned up during search. Using smac [3],
we then automatically configured GANAK on
the training set of each of the benchmarks in-
dividually. Figure 1 and Table 1 compare the
running times and PAR10! values of GANAK’s
default configuration to those of the optimised
configuration, measured on the test set in-
stances of the two different benchmarks.

1Penalised Average Runtime: counting every in-
stance not solved within the cutoff time as ten times.
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First consider the results on the GRID ex-
amples. We see that the optimised configura-
tion solves all instances within the cutoff time
and that the PAR10 value improves by two or-
ders of magnitude after configuration. Figure 1
shows speedups of up to a factor of 550 for the
54 examples that were already solved within
cutoff time by the default configuration.

Now consider the DQMR. results. Table 1
shows that the PAR10 value decreased by a
factor 2 after configuration; however, some in-
stances were still not solved within the cutoff;
Figure 1 shows that running time decreased
quite uniformly across our instance set.

Overall, automated configuration of
GANAK’s current design space produces much
less pronounced improvements over GANAK’S
default parameters for these instances than on
the GRID instances. It will be interesting to
investigate further why this is the case.

The variable branching heuristics available
in GANAK come in many different flavours: fol-
lowing fail-first strategies, aiming to maximise
the number of cache hits, or simply adding ran-
domness. These strategies have their own con-
figurable parameters. On the other hand, even
our extended version of GANAK only provides
a few (very crude) choices for cache clean-up,
and only one heuristic for filling the cache: it
simply stores every count it computes. Neither
optimised configuration chooses a cache clean-
up strategy that differs from GANAK’s default,
which uses a first-in-first-out heuristic.

We therefore believe that we can achieve
further performance improvements by expand-
ing the cache-related design space explored by
AAC, through the addition of new, more re-
fined cache management heuristics. The results
above motivate the need for these improve-
ments. To find these heuristics, we take inspira-
tion from CRYSTALBALL [7], where data min-
ing is used to predict how long a SAT solver
should keep a learnt clause. We plan to ap-
ply the same principle to two prediction tasks:
(1) given a newly computed component count,
should the solver store it in the cache, and (2)
given a stored component count, should the
solver delete it from the cache?



Better Caching for Better Model Counting

References

(1]

Bacchus, F., Dalmao, S., Pitassi, T.: DPLL
with caching: A new algorithm for #SAT and
Bayesian inference. ECCC (2003)

Hoos, H.H.: Programming by optimization.
Commun. ACM 55(2), 70-80 (2012)

Hutter, F., Hoos, H.H., Leyton-Brown, K.: Se-
quential model-based optimization for general
algorithm configuration. In: LION (2011)
Sang, T., Bacchus, F., Beame, P., Kautz, H.A.,
Pitassi, T.: Combining component caching and
clause learning for effective model counting. In:
SAT (2004)

Sang, T., Beame, P., Kautz, H.A.: Performing
Bayesian inference by weighted model count-
ing. In: AAAT (2005)

Sharma, S., Roy, S., Soos, M., Meel, K.S.:
GANAK: A scalable probabilistic exact model
counter. In: IJCAI (2019)

Soos, M., Kulkarni, R., Meel, K.S.: Crystal-
Ball: Gazing in the black box of SAT solving.
In: SAT (2019)

Thurley, M.: sharpSAT — Counting models
with advanced component caching and implicit
BCP. In: SAT (2006)

J.G. Rook et al.



